Lossless Video Compression Technique Using Bayesian Network and Entropy Coding

Rochan Avlur Venkat1 \hspace{1cm} Dr. Chandrashekar Vidhanathan2

1Department of Computer Science and Engineering
Mahindra École Centrale, Hyderabad

2Founder Director
Anveshna Pvt. Ldt., Bengaluru

IEEE TENSYMP, 2019
Outline

1. Motivation
2. Methodology
3. Experiments
4. Analysis
Global Internet Protocol video traffic will grow four-folds from 2017 to 2022\(^1\)

UHD (or 4K) video will account for 22 percent of global IP Video traffic by 2022\(^1\)

IP video traffic will account for 82 percent of traffic by 2022\(^1\)

High Fidelity video data is playing an *increasingly* important role in *medicine, science, education, and entertainment*

Lossless video compression algorithms are used in applications ranging from *archival of video records* to the *field of medicine*

\(^1\)Cisco Visual Networking Index: *Forecast and Trends, 2017–2022, Updated: February 27, 2019*
Video Compression

Pattern Recognition & Pattern Classification

- Spatial Correlation - Intra frame
- Temporal Correlation - Inter frame
- Encoding Schemes
Model and Update beliefs about states of certain variables when some other variables were observed

BNs aim to model conditional dependence between variable states

Given a BN, the Joint Probability distribution over all variables $x_1, ..., x_n$ is then calculated as:

$$P(x_1, \cdots, x_n) = \prod_{i=0}^{n} P(x_i | \prod_{i=0}^{n} x_i)$$ \hspace{1cm} (1)
BN Structure Learning

• Given a dataset of values, motivation is to discover a BN structure that best represents the data

```
Algorithm 1 Structure Learning

function GreedyHillClimbing(initial structure, \( N_{init} \), dataset \( D \), scoring function \( s \), stopping criteria \( C \))

\( N^* \leftarrow N_{init}, N' \leftarrow N^*, \text{tabu} \leftarrow N^* \)

while \( C \) is not satisfied do

\( N'' \leftarrow \text{argmax}_{N \in \text{neighborhood}(N')} \text{and} N \notin \text{tabu} \) \( s(N) \)

if \( s(N') > s(N'') \) then // Check local optimum

\( N'' \leftarrow \text{random}(N') \) // Random operators

end if

if \( s(N'') > s(N^*) \) then // Check new best

\( N^* \leftarrow N'' \)

end if

\( \text{tabu} \leftarrow \text{tabu} \cup N' \)

\( N' \leftarrow N'' \) // Move to neighbor

end while

return \( N^* \)

end function
```
Problem Statement

Bayesian Networks for Video Compression ?!
Color Space Conversion

\[Y = \frac{77}{256} R + \frac{150}{256} G + \frac{29}{256} B \]

\[C_b = -\frac{44}{256} R - \frac{87}{256} G + \frac{131}{256} B + 128 \]

\[C_r = \frac{131}{256} R - \frac{110}{256} G - \frac{21}{256} B + 128 \]

Difference Coding

(a) Difference

Binary Code

(a) Binary Codes
Learning a Bayesian Network

- Model conditional dependencies between individual binary variables by learning a BN structure.
- Choose the network with least Bayesian Information Criterion (BIC) score either by hill-climbing (HC) or a Tabu search (TABU) greedy search.

(a) Bayesian Network
Huffman Encoding

- Compute JP from Conditional Probability (CP) Table
- Construct a Huffman Encoding tree
- Look-up table will be based on CP rather than JP or frequency
Putting it all together...

Diagram:

1. Raw Digital Video
2. Raw Video Framing
3. YCbCr Decomposition
4. Pixel Transformation
5. Binary Code Construction
6. Learning Bayesian Networks
7. Entropy Encoding

Flow:
- Chroma & Luma Processing
- Compressed Video
Experimental Setup

- Raw uncompressed video files selected from SVT High Definition Multi-Format Test Set
- Compared the proposed technique *BayesianCompress* with *Gzip*, *FFV1*, *H.264* or *MPEG-4 Part 10*, *Dirac* and *JPEG2000*
- Pixel Transformation and Entropy Coding implemented in C programming language, compiled using the GNU C Compiler (GCC)
- Structure Learning of the Bayesian Network was implemented using *bnlearn* and *gRain* packages in R programming language
Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>blue_sky</th>
<th>rush_hour</th>
<th>station</th>
<th>tractor</th>
<th>Avg. Ratio (25 fps)</th>
<th>crowd_run</th>
<th>into_tree</th>
<th>old_town</th>
<th>Avg. Ratio (50 fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Rate (fps)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td># of Frames</td>
<td>217</td>
<td>500</td>
<td>313</td>
<td>690</td>
<td>-</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>Codec</td>
<td>Gzip</td>
<td>FFV1</td>
<td>H.264</td>
<td>Dirac</td>
<td>JPEG2000</td>
<td>BayesianCompress</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codec</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gzip</td>
<td>1.85 2.03 1.90 1.67</td>
</tr>
<tr>
<td>FFV1</td>
<td>2.74 3.19 2.69 2.74</td>
</tr>
<tr>
<td>H.264</td>
<td>2.68 3.04 2.69 2.65</td>
</tr>
<tr>
<td>Dirac</td>
<td>2.67 2.90 2.68 2.56</td>
</tr>
<tr>
<td>JPEG2000</td>
<td>2.62 3.20 2.69 2.73</td>
</tr>
<tr>
<td>BayesianCompress</td>
<td>2.69 3.13 2.80 2.88</td>
</tr>
</tbody>
</table>
Correlation and Conditional Dependencies of Pixels in independent Color Axis of a video stream can be exploited using Bayesian Networks for Video Compression.

Performed on average better than state-of-the-art techniques @ 25 fps, slightly behind H.264 @ 50 fps.

Exploring the use of Arithmetic Coding.

Custom Bayesian Network learning algorithm specifically for the proposed video compression technique to improve its overall accuracy and improve performance.
References I

S. Davies and A. Moore. *Bayesian networks for lossless dataset compression*. In Conference on Knowledge Discovery in Databases (KDD), 1999

Differential Pulse Code Modulation (DPCM), http://einstein.informatik.uni-oldenburg.de/rechnernetze/dpcm.htm

Rongkai Zhao et.al. Fast Near-Lossless or Lossless Compression of Large 3D Neuro-Anatomical Images

Tony Robinson, SHORTEN: Simple lossless and near lossless waveform compression

Artificial Intelligence: A Modern Approach. Pg. 461-565

John Skilling. *Nested Sampling for General Bayesian Computation*

Q&A
Thank You!